Coenzyme Q biosynthesis and its role in the respiratory chain structure

Citations of this article
Mendeley users who have this article in their library.


Coenzyme Q (CoQ) is a unique electron carrier in the mitochondrial respiratory chain, which is synthesized on-site by a nuclear encoded multiprotein complex. CoQ receives electrons from different redox pathways, mainly NADH and FADH2 from tricarboxylic acid pathway, dihydroorotate dehydrogenase, electron transfer flavoprotein dehydrogenase and glycerol-3-phosphate dehydrogenase that support key aspects of the metabolism. Here we explore some lines of evidence supporting the idea of the interaction of CoQ with the respiratory chain complexes, contributing to their superassembly, including respirasome, and its role in reactive oxygen species production in the mitochondrial inner membrane. We also review the current knowledge about the involvement of mitochondrial genome defects and electron transfer flavoprotein dehydrogenase mutations in the induction of secondary CoQ deficiency. This mechanism would imply specific interactions coupling CoQ itself or the CoQ-biosynthetic apparatus with the respiratory chain components. These interactions would regulate mitochondrial CoQ steady-state levels and function. This article is part of a Special Issue entitled ‘EBEC 2016: 19th European Bioenergetics Conference, Riva del Garda, Italy, July 2–6, 2016’, edited by Prof. Paolo Bernardi.




Alcázar-Fabra, M., Navas, P., & Brea-Calvo, G. (2016). Coenzyme Q biosynthesis and its role in the respiratory chain structure. Biochimica et Biophysica Acta - Bioenergetics, 1857(8), 1073–1078.

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free