A combinatorial analysis using observational data identifies species that govern ecosystem functioning

Citations of this article
Mendeley users who have this article in their library.


Understanding the relationship between biodiversity and ecosystem functioning has so far resulted from two main approaches: the analysis of species’ functional traits, and the analy- sis of species interaction networks. Here we propose a third approach, based on the associ- ation between combinations of species or of functional groups, which we term assembly motifs, and observed ecosystem functioning. Each assembly motif describes a biotic envi- ronment in which species interactions have particular effects on a given ecosystem function. Clustering species in functional groups generates a classification of ecosystems based on their assembly motif. We evaluate the quality of each species clustering, that is its ability to predict an ecosystem function, by the coefficient of determination of the ecosystem classifi- cation. An iterative process then enables identifying the species clustering in functional groups that best accounts for the functioning of the observed ecosystems. We test this approach using experimental and simulated datasets. We show that our combinatorial anal- ysis makes it possible to identify the combinations of functional groups of species whose interactions govern ecosystem functioning without any a priori knowledge of the species themselves or their interactions. Our combinatorial approach reproduces the associative learning of empirical ecologists, and proves to be powerful and parsimonious.




Jaillard, B., Deleporte, P., Loreau, M., & Violle, C. (2018). A combinatorial analysis using observational data identifies species that govern ecosystem functioning. PLoS ONE, 13(8). https://doi.org/10.1371/journal.pone.0201135

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free