Complexes of directed trees and independence complexes

22Citations
Citations of this article
7Readers
Mendeley users who have this article in their library.

Abstract

First we prove that certain complexes on directed acyclic graphs are shellable. Then we study independence complexes. Two theorems used for breaking and gluing such complexes are proved and applied to generalize the results by Kozlov. An interesting special case is anti-Rips complexes: a subset P of a metric space is the vertex set of the complex, and we include as a simplex each subset of P with no pair of points within distance r. For any finite subset P of R the homotopy type of the anti-Rips complex is determined. © 2008 Elsevier B.V. All rights reserved.

Cite

CITATION STYLE

APA

Engström, A. (2009). Complexes of directed trees and independence complexes. Discrete Mathematics, 309(10), 3299–3309. https://doi.org/10.1016/j.disc.2008.09.033

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free