On the complexity of finding common approximate substrings

Citations of this article
Mendeley users who have this article in their library.


Problems associated with finding strings that are within a specified Hamming distance of a given set of strings occur in several disciplines. In this paper, we use techniques from parameterized complexity to assess non-polynomial time algorithmic options and complexity for the COMMON APPROXIMATE SUBSTRING (CAS) problem. Our analyses indicate under which parameter restrictions useful algorithms are possible, and include both class membership and parameterized reductions to prove class hardness. In order to achieve fixed-parameter tractability, either a fixed string length or both a fixed size alphabet and fixed substring length are sufficient. Fixing either the string length or the alphabet size and Hamming distance is shown to be necessary, unless W[1] = FPT. An assortment of parameterized class membership and hardness results cover all other parameterized variants, showing in particular the effect of fixing the number of strings. © 2003 Elsevier B.V. All rights reserved.




Evans, P. A., Smith, A. D., & Wareham, H. T. (2003). On the complexity of finding common approximate substrings. Theoretical Computer Science, 306(1–3), 407–430. https://doi.org/10.1016/S0304-3975(03)00320-7

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free