Conservative finite difference schemes for the generalized Zakharov-Kuznetsov equations

2Citations
Citations of this article
5Readers
Mendeley users who have this article in their library.

Abstract

This paper is concerned with the construction of conservative finite difference schemes by means of discrete variational method for the generalized Zakharov-Kuznetsov equations and the numerical solvability of the two-dimensional nonlinear wave equations. A finite difference scheme is proposed such that mass and energy conservation laws associated with the generalized Zakharov-Kuznetsov equations hold. Our arguments are based on the procedure that D. Furihata has recently developed for real-valued nonlinear partial differential equations. Numerical results are given to confirm the accuracy as well as validity of the numerical solutions and then exhibit remarkable nonlinear phenomena of the interaction and behavior of pulse wave solutions. © 2011 Elsevier B.V. All rights reserved.

Cite

CITATION STYLE

APA

Nishiyama, H., Noi, T., & Oharu, S. (2012). Conservative finite difference schemes for the generalized Zakharov-Kuznetsov equations. In Journal of Computational and Applied Mathematics (Vol. 236, pp. 2998–3006). Elsevier B.V. https://doi.org/10.1016/j.cam.2011.04.010

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free