Constraining the sensitivity of iodide adduct chemical ionization mass spectrometry to multifunctional organic molecules using the collision limit and thermodynamic stability of iodide ion adducts

34Citations
Citations of this article
75Readers
Mendeley users who have this article in their library.

Abstract

The sensitivity of a chemical ionization mass spectrometer (ions formed per number density of analyte) is fundamentally limited by the collision frequency between reagent ions and analyte, known as the collision limit, the ion-molecule reaction time, and the transmission efficiency of product ions to the detector. We use the response of a time-of-flight chemical ionization mass spectrometer (ToF-CIMS) to N<sub>2</sub>O<sub>5</sub>, known to react with iodide at the collision limit, to constrain the combined effects of ion-molecule reaction time, which is strongly influenced by mixing and ion losses in the ion-molecule reaction drift tube. A mass spectrometric voltage scanning procedure elucidates the relative binding energies of the ion adducts, which influence the transmission efficiency of molecular ions through the electric fields within the vacuum chamber. Together, this information provides a critical constraint on the sensitivity of a ToF-CIMS towards a wide suite of routinely detected multifunctional organic molecules for which no calibration standards exist. We describe the scanning procedure, collision limit determination, and show results from the application of these constraints to the measurement of organic aerosol composition at two different field locations.

Cite

CITATION STYLE

APA

Lopez-Hilfiker, F. D., Iyer, S., Mohr, C., Lee, B. H., D’ambro, E. L., Kurtén, T., & Thornton, J. A. (2016). Constraining the sensitivity of iodide adduct chemical ionization mass spectrometry to multifunctional organic molecules using the collision limit and thermodynamic stability of iodide ion adducts. Atmospheric Measurement Techniques, 9(4), 1505–1512. https://doi.org/10.5194/amt-9-1505-2016

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free