Construction and characterization of non-uniform local interpolating polynomial splines

Citations of this article
Mendeley users who have this article in their library.


This paper presents a general framework for the construction of piecewise-polynomial local interpolants with given smoothness and approximation order, defined on non-uniform knot partitions. We design such splines through a suitable combination of polynomial interpolants with either polynomial or rational, compactly supported blending functions. In particular, when the blending functions are rational, our approach provides spline interpolants having low, and sometimes minimum degree. Thanks to its generality, the proposed framework also allows us to recover uniform local interpolating splines previously proposed in the literature, to generalize them to the non-uniform case, and to complete families of arbitrary support width. Furthermore it provides new local interpolating polynomial splines with prescribed smoothness and polynomial reproduction properties. © 2012 Elsevier B.V. All rights reserved.




Beccari, C. V., Casciola, G., & Romani, L. (2013). Construction and characterization of non-uniform local interpolating polynomial splines. Journal of Computational and Applied Mathematics, 240, 5–19.

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free