Cotranscriptionally formed DNA:RNA hybrids mediate transcription elongation impairment and transcription-associated recombination

407Citations
Citations of this article
281Readers
Mendeley users who have this article in their library.

Abstract

Genetic instability, a phenomenon relevant for developmentally regulated processes, cancer, and inherited disorders, can be induced by transcription. However, the mechanisms of transcription-associated genetic instability are not yet understood. Analysis of S. cerevisiae mutants of THO/TREX, a conserved eukaryotic protein complex functioning at the interface of transcription and mRNA metabolism, has provided evidence that transcription elongation impairment can cause hyperrecombination. Here we show, using hpr1Δ mutants, that the nascent mRNA can diminish transcription elongation efficiency and promote recombination. If during transcription the nascent mRNA is self-cleaved by a hammerhead ribozyme, the transcription-defect and hyperrecombination phenotypes of hpr1Δ cells are suppressed. Abolishment of hyperrecombination by overexpression of RNase H1 and molecular detection of DNA:RNA hybrids indicate that these are formed cotranscriptionally in hpr1Δ cells. These data support a model to explain the connection between recombination, transcription, and mRNA metabolism and provide a new perspective to understanding transcription-associated recombination.

Cite

CITATION STYLE

APA

Huertas, P., & Aguilera, A. (2003). Cotranscriptionally formed DNA:RNA hybrids mediate transcription elongation impairment and transcription-associated recombination. Molecular Cell, 12(3), 711–721. https://doi.org/10.1016/j.molcel.2003.08.010

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free