Coupling translocation with nucleic acid unwinding by NS3 helicase

Citations of this article
Mendeley users who have this article in their library.


We present a semiquantitative model for translocation and unwinding activities of monomeric nonstructural protein 3 (NS3) helicase. The model is based on structural, biochemical, and single-molecule measurements. The model predicts that the NS3 helicase actively unwinds duplex by reducing more than 50% the free energy that stabilizes base pairing/stacking. The unwinding activity slows the movement of the helicase in a sequence-dependent manner, lowering the average unwinding efficiency to less than 1 bp per ATP cycle. When bound with ATP, the NS3 helicase can display significant translocational diffusion. This increases displacement fluctuations of the helicase, decreases the average unwinding efficiency, and enhances the sequence dependence. Also, interactions between the helicase and the duplex stabilize the helicase at the junction, facilitating the helicase's unwinding activity while preventing it from dissociating. In the presence of translocational diffusion during active unwinding, the dissociation rate of the helicase also exhibits sequence dependence. Based on unwinding velocity fluctuations measured from single-molecule experiments, we estimate the diffusion rate to be on the order of 10 s-1. The generic features of coupling single-stranded nucleic acid translocation with duplex unwinding presented in this work may apply generally to a class of helicases. © 2010 Elsevier Ltd.




Yu, J., Cheng, W., Bustamante, C., & Oster, G. (2010). Coupling translocation with nucleic acid unwinding by NS3 helicase. Journal of Molecular Biology, 404(3), 439–455.

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free