Cutting stock with no three parts per pattern: Work-in-process and pattern minimization

Citations of this article
Mendeley users who have this article in their library.


The Pattern Minimization Problem (PMP) consists in finding, among the optimal solutions of a cutting stock problem, one that minimizes the number of distinct cutting patterns activated. The Work-in-process Minimization Problem (WMP) calls for scheduling the patterns so as to maintain as few open stacks as possible. This paper addresses a particular class of problems, where no more than two parts can be cut from any stock item, hence the feasible cutting patterns form the arc set of an undirected graph G. The paper extends the case G=Kn introduced in 1999 by McDiarmid. We show that some properties holding for G=Kn are no longer valid for the general case; however, for special cases of practical relevance, properly including G=Kn, quasi-exact solutions for the PMP and the WMP can be found: the latter in polynomial time, the former via a set-packing formulation providing very good lower bounds. © 2010 Elsevier B.V. All rights reserved.




Aloisio, A., Arbib, C., & Marinelli, F. (2011). Cutting stock with no three parts per pattern: Work-in-process and pattern minimization. Discrete Optimization, 8(2), 315–332.

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free