Cytoplasmic Plaque Formation in Hemidesmosome Development Is Dependent on SoxF Transcription Factor Function

5Citations
Citations of this article
11Readers
Mendeley users who have this article in their library.

Abstract

Hemidesmosomes are composed of intricate networks of proteins, that are an essential attachment apparatus for the integrity of epithelial tissue. Disruption leads to blistering diseases such as epidermolysis bullosa. Members of the Sox gene family show dynamic and diverse expression patterns during development and mutation analyses in humans and mice provide evidence that they play a remarkable variety of roles in development and human disease. Previous studies have established that the mouse mutant ragged-opossum (Raop) expresses a dominant-negative form of the SOX18 transcription factor that interferes with the function of wild type SOX18 and of the related SOXF-subgroup proteins SOX7 and -17. Here we show that skin and oral mucosa in homozygous Raop mice display extensive detachment of epithelium from the underlying mesenchymal tissue, caused by tearing of epithelial cells just above the plasma membrane due to hemidesmosome disruption. In addition, several hemidesmosome proteins expression were found to be dysregulated in the Raop mice. Our data suggest that SOXF transcription factors play a role in regulating formation of cytoplasmic plaque protein assembly, and that disrupted SOXF function results in epidermolysis bullosa-like skin phenotypes. © 2012 Oommen et al.

Cite

CITATION STYLE

APA

Oommen, S., Francois, M., Kawasaki, M., Murrell, M., Kawasaki, K., Porntaveetus, T., … Ohazama, A. (2012). Cytoplasmic Plaque Formation in Hemidesmosome Development Is Dependent on SoxF Transcription Factor Function. PLoS ONE, 7(9). https://doi.org/10.1371/journal.pone.0043857

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free