Object tracking is still an intriguing task as the target undergoes significant appearance changes due to illumination, fast motion, occlusion and shape deformation. Background clutter and numerous other environmental factors are other major constraints which remain a riveting challenge to develop a robust and effective tracking algorithm. In the present study, an adaptive Spatio-temporal context (STC)-based algorithm for online tracking is proposed by combining the context-aware formulation, Kalman filter, and adaptive model learning rate. For the enhancement of seminal STC-based tracking performance, different contributions were made in the proposed study. Firstly, a context-aware formulation was incorporated in the STC framework to make it computationally less expensive while achieving better performance. Afterwards, accurate tracking was made by employing the Kalman filter when the target undergoes occlusion. Finally, an adaptive update scheme was incorporated in the model to make it more robust by coping with the changes of the environment. The state of an object in the tracking process depends on the maximum value of the response map between consecutive frames. Then, Kalman filter prediction can be updated as an object position in the next frame. The average difference between consecutive frames is used to update the target model adaptively. Experimental results on image sequences taken from Template Color (TC)-128, OTB2013, and OTB2015 datasets indicate that the proposed algorithm performs better than various algorithms, both qualitatively and quantitatively.
CITATION STYLE
Mehmood, K., Jalil, A., Ali, A., Khan, B., Murad, M., Khan, W. U., & He, Y. (2021). Context-aware and occlusion handling mechanism for online visual object tracking. Electronics (Switzerland), 10(1), 1–16. https://doi.org/10.3390/electronics10010043
Mendeley helps you to discover research relevant for your work.