Inbreeding depression, the reduction in fitness that accompanies inbreeding, is one of the most important topics of research in evolutionary and conservation genetics. In the recent literature, much attention has been paid to the possibility of purging the genetic load. If inbreeding depression is due to deleterious alleles, whose effect on fitness are negative when in a homozygous state, then successive generations of inbreeding may result in a rebound in fitness due to the selective decrease in frequency of deleterious alleles. Here we examine the experimental evidence for purging of the genetic load by collating empirical tests of rebounds in fitness-related traits with inbreeding in animals and plants. We gathered data from 28 studies including five mammal, three insect, one mollusc, and 13 plant species. We tested for purging by examining three measures of fitness-component variation with serial generations of inbreeding: (1) changes in inbreeding depression, (2) changes in fitness components of inbred lines relative to the original outbred line, and (3) purged population (outcrossed inbred lines) trait means as a function of ancestral outbred trait means. Frequent and substantial purging was found using all three measures, but was particularly pronounced when tracking changes in inbreeding depression. Despite this, we found little correspondence between the three measures of purging within individual studies, indicating that the manner in which a researcher chooses to estimate purging will affect interpretation of the results obtained. The discrepancy suggests an alternative hypothesis: rebounds in fitness with inbreeding may have resulted from adaptation to laboratory conditions and not to purging when using outcrossed inbred lines. However, the pronounced reduction in inbreeding depression for a number of studies provides evidence for purging, as the measure is likely less affected by selection for laboratory conditions. Unlike other taxon-specific reviews on this topic, our results provide support for the purging hypothesis, but firm predictions about the situations in which purging is likely or the magnitude of fitness rebound possible when populations are inbred remain difficult. Further research is required to resolve the discrepancy between the results obtained using different experimental approaches.
CITATION STYLE
Crnokrak, P., & Barrett, S. C. H. (2002, December 1). Perspective: Purging the genetic load: A review of the experimental evidence. Evolution. https://doi.org/10.1111/j.0014-3820.2002.tb00160.x
Mendeley helps you to discover research relevant for your work.