RLM3, a TIR domain encoding gene involved in broad-range immunity of Arabidopsis to necrotrophic fungal pathogens

77Citations
Citations of this article
111Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Here, we describe the rapid cloning of a plant gene, Leptosphaeria maculans 3 (RLM3Col), which encodes a putative Toll interleukin-1 receptor-nucleotide binding (TIR-NB) class protein, which is involved in defence against the fungal pathogen L. maculans and against three other necrotrophic fungi. We have, through microarray-based case control bulk segregant comparisons of transcriptomes in pools of Col-0 x An-1 progeny, identified the absence of a locus that causes susceptibility in An-1. The significance of this locus on chromosome 4 for L. maculans resistance was supported by PCR-based mapping, and denoted resistance to RLM3Col. Differential susceptible phenotypes in four independent T-DNA insertion lines support the hypothesis that At4g16990 is required for RLM3Col function. The mutants in RLM3Col also exhibited an enhanced susceptibility to Botrytis cinerea, Alternaria brassicicola and Alternaria brassicae. Complementations of An-1 and T-DNA mutants using overexpression of a short transcript lacking the NB-ARC domain, or a genomic clone, restored resistance to all necrotrophic fungi. The elevated expression of RLM3Col on B. cinerea-susceptible mutants further suggested convergence in signalling and gene regulation between defence against B. cinerea and L. maculans. In the case of L. maculans, RLM3Col is required for efficient callose deposition downstream of RLM1Col. © 2008 The Authors.

Cite

CITATION STYLE

APA

Staal, J., Kaliff, M., Dewaele, E., Persson, M., & Dixelius, C. (2008). RLM3, a TIR domain encoding gene involved in broad-range immunity of Arabidopsis to necrotrophic fungal pathogens. Plant Journal, 55(2), 188–200. https://doi.org/10.1111/j.1365-313X.2008.03503.x

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free