This study proposes a novel piezoelectric micromachined ultrasonic transducer (PMUT), fabricated on a metal foil. Using a bottom-up, cost-effective micromachining technique, the PMUTs made of electrodes, a piezoelectric film, or electrode-sandwiched structures with versatile patterns were implemented on a large-area foil thinner rather than regular paper. The proposed microfabrication facilitated the PMUT to be able to generate ultrasonic waves with fundamental and harmonic resonances. The fourth-order resonances of the fabricated PMUT functionally operated at an ultrasonic spectrum of approximately 30 kHz as an ultrasonic emitter. The developed PMUT was paired with a microelectromechanical system (MEMS) microphone module for range-finding applications in the range of several tens of millimeters. A signal-processing scheme was developed to extract the representative pattern from the acquired signals that were emitted and received. The pattern enabled finding the distance between thePMUTand the microphone using time-of-flight and strength-variation technology. The developed PMUT-microphone pair demonstrated its range-finding performance, displaying an error of less than 0.7% using the time-of-flight method.
CITATION STYLE
Feng, G. H., & Liu, H. J. (2019). Piezoelectric micromachined ultrasonic transducers with a cost-effective bottom-up fabrication scheme for millimeter-scale range finding. Sensors (Switzerland), 19(21). https://doi.org/10.3390/s19214696
Mendeley helps you to discover research relevant for your work.