Este trabalho propõe uma análise desagregada de escolhas de destinos para viagens intermunicipais, por meio da aplicação de algoritmos de Aprendizagem de Máquinas - AM (Classification And Regression Tree - CART e Algoritmos Genéticos - AG). Foi utilizada uma Pesquisa OD, realizada pelo Centro de Estudos de Transportes e Meio Ambiente (UFBA), em 2012/2013 em onze municípios do estado da Bahia. Foi realizada a calibração de um Modelo Logit Multinomial a partir do algoritmo AG, trazendo a vantagem de associação das escolhas dos destinos a valores de coeficientes estimados das funções utilidade aleatórias, sem os problemas relativos à calibração dos modelos logit tradicionais, tais como erros identicamente distribuídos, seguindo a distribuição de Gumbel. O desempenho de cada algoritmo de AM foi comparado à abordagem tradicional (modelo gravitacional). Os resultados evidenciaram que os algoritmos de AM apresentaram melhores previsões para a escolha de destinos, sendo que o AG apresentou vantagens na obtenção dos parâmetros associados às variáveis independentes. A principal conclusão é que tais algoritmos podem ser aplicados na modelagem de distribuição de viagens, incorporando o efeito das variáveis desagregadas, sem suposições matemáticas rigorosas contidas no ajuste de modelos tradicionais desagregados.
CITATION STYLE
Roma, A. D. de S., Souza Pitombo, C., Guimarães, H. S., & Costa, L. H. M. (2018). Análise de desempenho de algoritmos de aprendizagem de máquinas para análise desagregada de viagens intermunicipais. TRANSPORTES, 26(3), 159–175. https://doi.org/10.14295/transportes.v26i3.1614
Mendeley helps you to discover research relevant for your work.