A multi-component discrete Boltzmann model for nonequilibrium reactive flows

64Citations
Citations of this article
40Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

We propose a multi-component discrete Boltzmann model (DBM) for premixed, nonpremixed, or partially premixed nonequilibrium reactive flows. This model is suitable for both subsonic and supersonic flows with or without chemical reaction and/or external force. A two-dimensional sixteen-velocity model is constructed for the DBM. In the hydrodynamic limit, the DBM recovers the modified Navier-Stokes equations for reacting species in a force field. Compared to standard lattice Boltzmann models, the DBM presents not only more accurate hydrodynamic quantities, but also detailed nonequilibrium effects that are essential yet long-neglected by traditional fluid dynamics. Apart from nonequilibrium terms (viscous stress and heat flux) in conventional models, specific hydrodynamic and thermodynamic nonequilibrium quantities (high order kinetic moments and their departure from equilibrium) are dynamically obtained from the DBM in a straightforward way. Due to its generality, the developed methodology is applicable to a wide range of phenomena across many energy technologies, emissions reduction, environmental protection, mining accident prevention, chemical and process industry.

Cite

CITATION STYLE

APA

Lin, C., Luo, K. H., Fei, L., & Succi, S. (2017). A multi-component discrete Boltzmann model for nonequilibrium reactive flows. Scientific Reports, 7(1). https://doi.org/10.1038/s41598-017-14824-9

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free