Abstract
Genetic variation is the fuel of evolution, with standing genetic variation especially important for short-term evolution and local adaptation. To date, studies of spatiotemporal patterns of genetic variation in natural populations have been challenging, as comprehensive sampling is logistically difficult, and sequencing of entire populations costly. Here, we address these issues using a collaborative approach, sequencing 48 pooled population samples from 32 locations, and perform the first continent-wide genomic analysis of genetic variation in European Drosophila melanogaster. Our analyses uncover longitudinal population structure, provide evidence for continent-wide selective sweeps, identify candidate genes for local climate adaptation, and document clines in chromosomal inversion and transposable element frequencies. We also characterize variation among populations in the composition of the fly microbiome, and identify five new DNA viruses in our samples.
Author supplied keywords
Cite
CITATION STYLE
Kapun, M., Barron, M. G., Staubach, F., Obbard, D. J., Axel, R., Vieira, J., … Gonzalez, J. (2020). Genomic analysis of european drosophila melanogaster populations reveals longitudinal structure, continent-wide selection, and previously unknown DNA viruses. Molecular Biology and Evolution, 37(9), 2661–2678. https://doi.org/10.1093/molbev/msaa120
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.