Multiple resource allocation in device-to-device communication underlaying cellular networks from an end-to-end energy-efficient perspective

4Citations
Citations of this article
7Readers
Mendeley users who have this article in their library.

Abstract

In this study, a novel energy-efficient resource allocation (RA) scheme is proposed for device-to-device communication underlaying cellular networks from an end-to-end energy-efficient perspective. The time slot, sub-channel (frequency) and power resources are allocated together to optimise the energy-efficiency (EE) performance. Furthermore, to match the practical communication situations and achieve the best EE performance, the time-frequency resource units (RUs) are used in a complete-shared pattern. Then, the multiuser interference is very severe and complex. With all these considerations, the energy-efficient RA problem is formulated as a mixed integer and non-convex optimisation problem, which is an non-deterministic polynominal (NP)-hard problem and extremely difficult to solve. To obtain a desirable solution with a reasonable computation cost, the authors tackle this problem with two steps. Step 1, the RU allocation policy is obtained via a greedy search method, and the original optimisation problem is reduced to a non-convex fractional programming problem. Step 2, exploiting the properties of fractional programming and after some manipulations, they transform the reduced problem to a concave optimisation problem, and obtain the sub-optimal power allocation strategy through the Lagrange dual approach. Finally, simulation results are presented to validate the effectiveness of the proposed RA scheme.

Cite

CITATION STYLE

APA

Xu, Q., Ji, H., & Li, X. (2015). Multiple resource allocation in device-to-device communication underlaying cellular networks from an end-to-end energy-efficient perspective. IET Communications, 9(9), 1208–1220. https://doi.org/10.1049/iet-com.2014.0994

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free