Insights into photovoltaic properties of ternary organic solar cells from phase diagrams

N/ACitations
Citations of this article
27Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The efficiency of ternary organic solar cells relies on the spontaneous establishment of a nanostructured network of donor and acceptor phases during film formation. A fundamental understanding of phase composition and arrangement and correlations to photovoltaic device parameters is of utmost relevance for both science and technology. We demonstrate a general approach to understanding solar cell behavior from simple thermodynamic principles. For two ternary blend systems we construct and model phase diagrams. Details of EQE and solar cell parameters can be understood from the phase behavior. Our blend system is composed of PC70BM, PBDTTT-C and a near-infrared absorbing cyanine dye. Cyanine dyes are accompanied by counterions, which, in a first approximation, do not change the photophysical properties of the dye, but strongly influence the morphology of the ternary blend. We argue that counterion dissociation is responsible for different mixing behavior. For the dye with a hexafluorophosphate counterion a hierarchical morphology develops, the dye phase separates on a large scale from PC70BM and cannot contribute to photocurrent. Differently, a cyanine dye with a TRISPHAT counterion shows partial miscibility with PC70BM. A large two-phase region dictated by the PC70BM: PBDTTT-C mixture is present and the dye greatly contributes to the short-circuit current. (Figure presented.).

Cite

CITATION STYLE

APA

Makha, M., Schwaller, P., Strassel, K., Anantharaman, S. B., Nüesch, F., Hany, R., & Heier, J. (2018). Insights into photovoltaic properties of ternary organic solar cells from phase diagrams. Science and Technology of Advanced Materials, 19(1), 669–682. https://doi.org/10.1080/14686996.2018.1509275

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free