A Research Method for Semi-Automated Large-Scale Cultivation of Maize to Full Maturity in an Artificial Environment

4Citations
Citations of this article
19Readers
Mendeley users who have this article in their library.

Abstract

There are unique advantages and disadvantages to using the field, greenhouse, growth chamber, and media-less techniques for growing maize (Zea mays L.) for research purposes. Soil-buffered nutrients such as phosphorus (P) do not allow for precise control of solution concentrations in the field, while greenhouses, growth chambers, and hydroponics provide limiting conditions. The objectives of this study were to develop a practical technique for productively cultivating several maize plants from seed to physiological maturity (R6) in a grow room environment, with precise control of nutrient availability and timing, and evaluate its utility for the purpose of measuring plant responses to variations in nutrient concentrations. The construction and testing of a semi-automated grow room for conducting nutrient studies on 96 maize plants utilizing simulated or artificial conditions are described. Plant growth response to a range of solution phosphorus (P) concentrations was tested to evaluate the utility of the technique. Maize yield components were measured and compared to values for field-grown plants. Due to ideal conditions and successful simulation of light intensity, diurnal fluctuations in temperature and RH, and changing photoperiod, grain yield and tissue nutrient concentrations were comparable to field-grown maize, although with greater shoot biomass. Plants responded positively to increased P concentrations in fertigation. The technique can be used for large-scale plant nutrient studies that require precise control of bioavailability and timing as well as manipulation of light intensity and photoperiod duration.

Cite

CITATION STYLE

APA

Wiethorn, M., Penn, C., & Camberato, J. (2021). A Research Method for Semi-Automated Large-Scale Cultivation of Maize to Full Maturity in an Artificial Environment. Agronomy, 11(10). https://doi.org/10.3390/agronomy11101898

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free