Skip to content

Contact center scheduling with strict resource requirements

2Citations
Citations of this article
1Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Consider the following problem which often arises in contact center scheduling scenarios. We are given a set of employees where each employee can be deployed for shifts consisting of L consecutive time units. Further, each employee specifies a set of possible start times, and can be deployed for a bounded number of shifts only. At each point of time t, we are also given a lower bound rt on the number of employees that should be present at this time. The goal is to find a schedule for the employees such that the number of time slots whose requirements are met is maximized. Such problems naturally arise in many other situations, e.g., sensor networks and cloud computing. The strict nature of the resource requirement makes this problem very hard to approximate. In this paper, we give a bicriteria approximation algorithm for this problem. Given a parameter ∈ > 0, we give an O(1/∈ 3·log 1/∈)-approximation algorithm for this problem, where we count those time slots for which we satisfy at least (1-∈)-fraction of the requirement. Our techniques involve a configuration LP relaxation for this problem, and we use non-trivial structural properties of an optimal solution to solve this LP relaxation. We even consider the more general problem where shift lengths of different employees can vary significantly. In this case, we show that even finding a good bicriteria approximation is hard (under standard complexity theoretic assumptions). © 2011 Springer-Verlag.

Cite

CITATION STYLE

APA

Dhesi, A., Gupta, P., Kumar, A., Parija, G. R., & Roy, S. (2011). Contact center scheduling with strict resource requirements. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (Vol. 6655 LNCS, pp. 156–169). https://doi.org/10.1007/978-3-642-20807-2_13

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free