Toward Targeted Change Detection with Heterogeneous Remote Sensing Images for Forest Mortality Mapping

3Citations
Citations of this article
8Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Several generic methods have recently been developed for change detection in heterogeneous remote sensing data, such as images from synthetic aperture radar (SAR) and multispectral radiometers. However, these are not well-suited to detect weak signatures of certain disturbances of ecological systems. To resolve this problem we propose a new approach based on image-to-image translation and one-class classification (OCC). We aim to map forest mortality caused by an outbreak of geometrid moths in a sparsely forested forest-tundra ecotone using multisource satellite images. The images preceding and following the event are collected by Landsat-5 and RADARSAT-2, respectively. Using a recent deep learning method for change-aware image translation, we compute difference images in both satellites’ respective domains. These differences are stacked with the original pre- and post-event images and passed to an OCC trained on a small sample from the targeted change class. The classifier produces a credible map of the complex pattern of forest mortality.

Cite

CITATION STYLE

APA

Agersborg, J. A., Luppino, L. T., Anfinsen, S. N., & Jepsen, J. U. (2022). Toward Targeted Change Detection with Heterogeneous Remote Sensing Images for Forest Mortality Mapping. Canadian Journal of Remote Sensing, 48(6), 826–848. https://doi.org/10.1080/07038992.2022.2135497

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free