Substantial clinical evidence indicates hyperthyroidism enhances coagulation and increases the risk of thrombosis. In vitro and clinical evidence implicate multiple mechanisms for this risk. Genomic actions of thyroid hormone as 3,5,3′-triiodo-L-thyronine (T3) via a nuclear thyroid hormone receptor have been implicated, but recent evidence shows that nongenomic mechanisms initiated at the receptor for L-thyroxine (T4) on platelet integrin αvβ3 are prothrombotic. The T4-initiated mechanisms involve platelet activation and, in addition, cellular production of cytokines and chemokines such as CX3CL1 with procoagulatory activities. These procoagulant actions of T4 are particulary of note because within cells T4 is not seen to be functional, but to be only a prohormone for T3. Finally, it is also possible that thyroid hormone stimulates platelet-endothelial cell interaction involved in local thrombus generation. In this brief review, we survey mechanisms by which thyroid hormone is involved in coagulation and platelet functions. It is suggested that the threshold should be lowered for considering the possibility that clinically significant clotting may complicate hyperthyroidism. The value of routine measurement of partial thromboplastin time or circulating D-dimer in patients with hyperthyroid or in patients treated with thyrotropin-suppressing dosage of T4 requires clinical testing.
CITATION STYLE
Davis, P. J., Mousa, S. A., & Schechter, G. P. (2018, October 1). New Interfaces of Thyroid Hormone Actions With Blood Coagulation and Thrombosis. Clinical and Applied Thrombosis/Hemostasis. SAGE Publications Inc. https://doi.org/10.1177/1076029618774150
Mendeley helps you to discover research relevant for your work.