Pomegranate-like Core-Shell Ni-NSs@MSNSs as a High Activity, Good Stability, Rapid Magnetic Separation, and Multiple Recyclability Nanocatalyst for DCPD Hydrogenation

9Citations
Citations of this article
6Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

A novel pomegranate-like Ni-NSs@MSNSs nanocatalyst was successfully synthesized via a modified Stöber method, and its application in the hydrogenation of dicyclopentadiene (DCPD) was firstly reported. The Ni-NSs@MSNSs possessed a high specific area (658 m2/g) and mesoporous structure (1.7-3.3 nm). The reaction of hydrogenation of DCPD to endo-tetrahydrodicyclopentadiene (endo-THDCPD) was used to evaluate the catalytic performance of the prepared materials. The distinctive pomegranate-like Ni-NSs@MSNSs core-shell nanocomposite exhibited superior catalytic activity (TOF = 106.0 h-1 and STY = 112.7 g·L-1·h-1) and selectivity (98.9%) than conventional Ni-based catalysts (experimental conditions: Ni/DCPD/cyclohexane = 1/100/1000 (w/w), 150 °C, and 2.5 MPa). Moreover, the Ni-NSs@MSNSs nanocatalyst could be rapidly and conveniently recycled by magnetic separation without appreciable loss. The Ni-NSs@MSNSs also exhibited excellent thermal stability (≥750 °C) and good recycling performance (without an activity and selectivity decrease in four runs). The superior application performance of the Ni-NSs@MSNSs nanocatalyst was mainly owing to its unique pomegranate-like structure and core-shell synergistic confinement effect.

Cite

CITATION STYLE

APA

Gao, X., Zhang, H., Guan, J., Shi, D., Wu, Q., Chen, K. C., … Li, H. (2021). Pomegranate-like Core-Shell Ni-NSs@MSNSs as a High Activity, Good Stability, Rapid Magnetic Separation, and Multiple Recyclability Nanocatalyst for DCPD Hydrogenation. ACS Omega, 6(17), 11570–11584. https://doi.org/10.1021/acsomega.1c00779

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free