MEC1 and TEL1 encode ATR- and ATM-related proteins in the budding yeast Saccharomyces cerevisiae, respectively. Phleomycin is an agent that catalyzes double-strand breaks in DNA. We show here that both Mec1 and Tel1 regulate the checkpoint response following phleomycin treatment. MEC1 is required for Rad53 phosphorylation and cell-cycle progression delay following phleomycin treatment in G1, S or G2/M phases. The tel1Δ mutation confers a defect in the checkpoint responses to phleomycin treatment in S phase. In addition, the tel1Δ mutation enhances the mec1 defect in activation of the phleomycin-induced checkpoint pathway in S phase. In contrast, the tel1Δ mutation confers only a minor defect in the checkpoint responses in G1 phase and no apparent defect in G2/M phase. Methyl methanesulfonate (MMS) treatment also activates checkpoints, inducing Rad53 phosphorylation in S phase. MMS-induced Rad53 phosphorylation is not detected in mec1Δ mutants during S phase, but occurs in tel1Δ mutants similar to wild-type cells. Finally, Xrs2 is phosphorylated after phleomycin treatment in a TEL1-dependent manner during S phase, whereas no significant Xrs2 phosphorylation is detected after MMS treatment. Together, our results support a model in which Tel1 contributes to checkpoint control in response to phleomycin-induced DNA damage in S phase.
CITATION STYLE
Nakada, D., Shimomura, T., Matsumoto, K., & Sugimoto, K. (2003, March 15). The ATM-related Tel1 protein of Saccharomyces cerevisiae controls a checkpoint response following phleomycin treatment. Nucleic Acids Research. https://doi.org/10.1093/nar/gkg252
Mendeley helps you to discover research relevant for your work.