Some recent developments in auxiliary-field quantum Monte Carlo for real materials

36Citations
Citations of this article
27Readers
Mendeley users who have this article in their library.
Get full text

Abstract

The auxiliary-field quantum Monte Carlo (AFQMC) method is a general numerical method for correlated many-electron systems, which is being increasingly applied in lattice models, atoms, molecules, and solids. Here, we introduce the theory and algorithm of the method specialized for real materials and present several recent developments. We give a systematic exposition of the key steps of AFQMC, closely tracking the framework of a modern software library we are developing. The building of a Monte Carlo Hamiltonian, projecting to the ground state, sampling two-body operators, phaseless approximation, and measuring ground state properties are discussed in detail. An advanced implementation for multi-determinant trial wave functions is described, which dramatically speeds up the algorithm and reduces the memory cost. We propose a self-consistent constraint for real materials, and discuss two flavors for its realization, either by coupling the AFQMC calculation to an effective independent-electron calculation or via the natural orbitals of the computed one-body density matrix.

Cite

CITATION STYLE

APA

Shi, H., & Zhang, S. (2021). Some recent developments in auxiliary-field quantum Monte Carlo for real materials. Journal of Chemical Physics, 154(2). https://doi.org/10.1063/5.0031024

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free