Deep Learning Assisted Detection for Index Modulation Aided mmWave Systems

11Citations
Citations of this article
24Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

In this paper, we propose deep learning assisted detection for index modulation millimeter wave (mmWave) systems, where we train a neural network (NN) to jointly detect the transmitted data and index information without relying on explicit channel state information (CSI). As a design example, we first employ multi-set space-time shift keying (MS-STSK) combined with beamforming for transmission over the mmWave channel, where the information is conveyed implicitly using the index of the antennas, the dispersion matrix and the M-ary constellation. Then, we analyze our design when MS-STSK transmission is considered in conjunction with beam index modulation (BIM), where the information is also conveyed by the beam index in addition to the MS-STSK information. In contrast to the MS-STSK's conventional maximum likelihood (ML) detector, our learning-assisted detection dispenses with the channel estimation stage. We demonstrate by simulations that the learning assisted detection outperforms the ML-aided detection in the face of channel impairments with low complexity. Furthermore, we show by simulations that ML-aided detection produces an error floor, when the MS-STSK transmission is coupled with BIM, when realistic channel estimation errors are considered. Additionally, we present qualitative discussions on the receiver complexity in terms of its search space as well as the number of computations required.

Cite

CITATION STYLE

APA

Katla, S., Xiang, L., Zhang, Y., El-Hajjar, M., Mourad, A. A. M., & Hanzo, L. (2020). Deep Learning Assisted Detection for Index Modulation Aided mmWave Systems. IEEE Access, 8, 202738–202754. https://doi.org/10.1109/ACCESS.2020.3035961

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free