Superinfection exclusion, a phenomenon in which a preexisting viral infection prevents a secondary infection with the same or a closely related virus, has been described for various viruses, including important pathogens of humans, animals, and plants. The phenomenon was initially used to test the relatedness of plant viruses. Subsequently, purposeful infection with a mild isolate has been implemented as a protective measure against virus isolates that cause severe disease. In the medical and veterinary fields, superinfection exclusion was found to interfere with repeated applications of virus-based vaccines to individuals with persistent infections and with the introduction of multicomponent vaccines. In spite of its significance, our understanding of this phenomenon is surprisingly incomplete. Recently, it was demonstrated that superinfection exclusion of Citrus tristeza virus (CTV), a positive-sense RNA closterovirus, occurs only between isolates of the same strain, but not between isolates of different strains of the virus. In this study, I show that superinfection exclusion by CTV requires production of a specific viral protein, the p33 protein. Lack of the functional p33 protein completely eliminated the ability of the virus to exclude superinfection by the same or a closely related virus. Remarkably, the protein appeared to function only in a homology-dependent manner. A cognate protein from a heterologous strain failed to confer the exclusion, suggesting the existence of precise interactions of the p33 protein with other factors involved in this complex phenomenon.
CITATION STYLE
Folimonova, S. Y. (2012). Superinfection Exclusion Is an Active Virus-Controlled Function That Requires a Specific Viral Protein. Journal of Virology, 86(10), 5554–5561. https://doi.org/10.1128/jvi.00310-12
Mendeley helps you to discover research relevant for your work.