The drinking water treatment plants (DWTPs) in the developing countries urgently need an efficient pre-treatment for nitrate (NO3−) removal to cope with the increasing NO3− pollution in raw water. An upflow sludge blanket (USB) reactor applied for NO3− removal from domestic wastewater may be adopted by the DWTPs. However, studies on the optimal carbon-to-nitrogen ratio (C/N) and operation of USB reactor at short hydraulic retention times (HRT) for high-rate polluted raw water pre-treatment are lacking. In this study, we first investigated the optimal C/N for biological NO3− removal in a sequencing batch reactor (SBR). An USB reactor was then operated with the optimal C/N for pre-treating synthetic raw water contaminated with NO3− (40 mg N L− 1) to monitor the NO3− removal performance and to examine opportunities for reducing the HRT. After operating the SBR with designed C/N of 4, 3 and 2 g C g− 1 N, we selected C/N of 3 g C g− 1 N as the optimal ratio due to the lower carbon breakthrough and nitrite (NO2−) accumulation in the SBR. The USB reactor achieved complete NO3− and NO2− removal with a lower designed C/N of 2 g C g− 1 N due to the longer sludge retention time when compared with that of SBR (10 d). The high specific denitrification rate (18.7 ± 3.6 mg N g− 1 mixed liquor volatile suspended solids h− 1) suggested a possible HRT reduction to 36 min. We successfully demonstrated an USB reactor for high-rate NO3− removal, which could be a promising technology for DWTPs to pre-treat raw water sources polluted with NO3−.
CITATION STYLE
How, S. W., Ting, C. X., Yap, J. Y., Kwang, C. Y., Tan, C. K., Yoochatchaval, W., … Chua, A. S. M. (2021). Effect of carbon-to-nitrogen ratio on high-rate nitrate removal in an upflow sludge blanket reactor for polluted raw water pre-treatment application. Sustainable Environment Research, 31(1). https://doi.org/10.1186/s42834-021-00086-8
Mendeley helps you to discover research relevant for your work.