Eleutherococcus species cultivated in Europe: A new source of compounds with antiacetylcholinesterase, antihyaluronidase, anti-DPPH, and cytotoxic activities

15Citations
Citations of this article
25Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Secondary metabolites of the roots of Eleutherococcus spp. cultivated in Poland, or the bioactivity, are not fully known. The 75% methanol extracts of five Eleutherococcus spp. (E. senticosus, E. divaricatus, E. sessiliflorus, E. gracilistylus, and E. henryi) were examined for the content of polyphenols and phenolic acids as well as for antiacetylcholinesterase, antihyaluronidase, anti-DPPH, and cytotoxic activities. The richest in polyphenols were the roots of E. henryi (10.4 mg/g DW), while in flavonoids the roots of E. divaricatus (6.5 mg/g DW). The richest in phenolic acids occurred the roots of E. henryi [protocatechuic acid (1865 μg/g DE), caffeic acid (244 μg/g DE), and p-coumaric and ferulic acids (55 μg/g DE)]. The highest inhibition of AChE was observed for E. gracilistylus and E. sessiliflorus (32%), at the concentration of 100 μg/0.19 mL of the reaction mixture, while that of Hyal for the roots of E. henryi (40.7%), at the concentration of 100 μg/0.16 mL of the reaction mixture. Among five species tested, the E. henryi extract exhibited the strongest HL-60 cell line growth's inhibition (IC 50 270 μg/mL). The extracts reduced DPPH in a time-dependent mode, at the concentration of 0.8 mg/mL. After 90 min from 14.7 to 26.2%, DPPH was reduced. A phytochemical composition and activity of the Eleutherococcus species, cultivated in Poland, are still under research; however, on the basis of the results obtained, it may be concluded that they may become a source of phytochemicals and be useful for Europe's citizens.

Cite

CITATION STYLE

APA

Adamczyk, K., Olech, M., Abramek, J., Pietrzak, W., Kuźniewski, R., Bogucka-Kocka, A., … Zauski, D. (2019). Eleutherococcus species cultivated in Europe: A new source of compounds with antiacetylcholinesterase, antihyaluronidase, anti-DPPH, and cytotoxic activities. Oxidative Medicine and Cellular Longevity, 2019. https://doi.org/10.1155/2019/8673521

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free