Face detection in nighttime images using visible-light camera sensors with two-step faster region-based convolutional neural network

44Citations
Citations of this article
60Readers
Mendeley users who have this article in their library.

Abstract

Conventional nighttime face detection studies mostly use near-infrared (NIR) light cameras or thermal cameras, which are robust to environmental illumination variation and low illumination. However, for the NIR camera, it is difficult to adjust the intensity and angle of the additional NIR illuminator according to its distance from an object. As for the thermal camera, it is expensive to use as a surveillance camera. For these reasons, we propose a nighttime face detection method based on deep learning using a single visible-light camera. In a long-distance night image, it is difficult to detect faces directly from the entire image due to noise and image blur. Therefore, we propose Two-Step Faster region-based convolutional neural network (R-CNN) based on the image preprocessed by histogram equalization (HE). As a two-step scheme, our method sequentially performs the detectors of body and face areas, and locates the face inside a limited body area. By using our two-step method, the processing time by Faster R-CNN can be reduced while maintaining the accuracy of face detection by Faster R-CNN. Using a self-constructed database called Dongguk Nighttime Face Detection database (DNFD-DB1) and an open database of Fudan University, we proved that the proposed method performs better compared to other existing face detectors. In addition, the proposed Two-Step Faster R-CNN outperformed single Faster R-CNN and our method with HE showed higher accuracies than those without our preprocessing in nighttime face detection.

Cite

CITATION STYLE

APA

Cho, S. W., Baek, N. R., Kim, M. C., Koo, J. H., Kim, J. H., & Park, K. R. (2018). Face detection in nighttime images using visible-light camera sensors with two-step faster region-based convolutional neural network. Sensors (Switzerland), 18(9). https://doi.org/10.3390/s18092995

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free