Continuous Three-Dimensional Printing of Architected Piezoelectric Sensors in Minutes

  • Liu S
  • Wang W
  • Xu W
  • et al.
20Citations
Citations of this article
33Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Additive manufacturing (AM), also known as three-dimensional (3D) printing, is thriving as an effective and robust method in fabricating architected piezoelectric structures, yet most of the commonly adopted printing techniques often face the inherent speed-accuracy trade-off, limiting their speed in manufacturing sophisticated parts containing micro-/nanoscale features. Herein, stabilized, photo-curable resins comprising chemically functionalized piezoelectric nanoparticles (PiezoNPs) were formulated, from which microscale architected 3D piezoelectric structures were printed continuously via micro continuous liquid interface production ( μ CLIP) at speeds of up to ~60 μ m s -1 , which are more than 10 times faster than the previously reported stereolithography-based works. The 3D-printed functionalized barium titanate (f-BTO) composites reveal a bulk piezoelectric charge constant d 33 of 27.70 pC N -1 with the 30 wt% f-BTO. Moreover, rationally designed lattice structures that manifested enhanced, tailorable piezoelectric sensing performance as well as mechanical flexibility were tested and explored in diverse flexible and wearable self-powered sensing applications, e.g., motion recognition and respiratory monitoring.

Cite

CITATION STYLE

APA

Liu, S., Wang, W., Xu, W., Liu, L., Zhang, W., Song, K., & Chen, X. (2022). Continuous Three-Dimensional Printing of Architected Piezoelectric Sensors in Minutes. Research, 2022. https://doi.org/10.34133/2022/9790307

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free