Alginate is a family of linear copolymers of (1→4)-linked β-D-mannuronic acid and its C-5 epimer α-L-guluronic acid. The polymer is first produced as polymannuronic acid and the guluronic acid residues are then introduced at the polymer level by mannuronan C-5-epimerases. The structure of the catalytic A-module of the Azotobacter vinelandii mannuronan C-5-epimerase AlgE4 has been determined by x-ray crystallography at 2.1-Å resolution. AlgE4A folds into a right-handed parallel β-helix structure originally found in pectate lyase C and subsequently in several polysaccharide lyases and hydrolases. The β-helix is composed of four parallel β-sheets, comprising 12 complete turns, and has an amphipathic α-helix near the N terminus. The catalytic site is positioned in a positively charged cleft formed by loops extending from the surface encompassing Asp152, an amino acid previously shown to be important for the reaction. Site-directed mutagenesis further implicates Tyr149, His154, and Asp178 as being essential for activity. Tyr149 probably acts as the proton acceptor, whereas His 154 is the proton donor in the epimerization reaction. © 2008 by The American Society for Biochemistry and Molecular Biology, Inc.
CITATION STYLE
Rozeboom, H. J., Bjerkan, T. M., Kalk, K. H., Ertesvåg, H., Holtan, S., Aachmann, F. L., … Dijkstra, B. W. (2008). Structural and mutational characterization of the catalytic A-module of the mannuronan C-5-epimerase AlgE4 from Azotobacter vinelandii. Journal of Biological Chemistry, 283(35), 23819–23828. https://doi.org/10.1074/jbc.M804119200
Mendeley helps you to discover research relevant for your work.