Background: Plant biotechnology can be leveraged to produce food, fuel, medicine, and materials. Standardized methods advocated by the synthetic biology community can accelerate the plant design cycle, ultimately making plant engineering more widely accessible to bioengineers who can contribute diverse creative input to the design process.Results: This paper presents work done largely by undergraduate students participating in the 2010 International Genetically Engineered Machines (iGEM) competition. Described here is a framework for engineering the model plant Arabidopsis thaliana with standardized, BioBrick compatible vectors and parts available through the Registry of Standard Biological Parts (http://www.partsregistry.org). This system was used to engineer a proof-of-concept plant that exogenously expresses the taste-inverting protein miraculin.Conclusions: Our work is intended to encourage future iGEM teams and other synthetic biologists to use plants as a genetic chassis. Our workflow simplifies the use of standardized parts in plant systems, allowing the construction and expression of heterologous genes in plants within the timeframe allotted for typical iGEM projects. © 2012 Boyle et al.; licensee BioMed Central Ltd.
CITATION STYLE
Boyle, P. M., Burrill, D. R., Inniss, M. C., Agapakis, C. M., Deardon, A., DeWerd, J. G., … Silver, P. A. (2012). A BioBrick compatible strategy for genetic modification of plants. Journal of Biological Engineering, 6. https://doi.org/10.1186/1754-1611-6-8
Mendeley helps you to discover research relevant for your work.