Skip to content

Stochastic Algorithms: Foundations and Applications

  • Englert M
  • Vöcking B
  • Winkler M
ISSN: 03029743
Citations of this article
Mendeley users who have this article in their library.


In the economical caching problem, an online algorithm is given a sequence of prices for a certain commodity. The algorithm has to manage a buffer of fixed capacity over time. We assume that time proceeds in discrete steps. In step i, the commodity is available at price c i ∈ [α, β], where β > α ≥ 0 and c i ∈ ℕ. One unit of the commodity is consumed per step. The algorithm can buy this unit at the current price c i, can take a previously bought unit from the storage, or can buy more than one unit at price c i and put the remaining units into the storage. In this paper, we study the economical caching problem in a probabilistic analysis, that is, we assume that the prices are generated by a random walk with reflecting boundaries α and β. We are able to identify the optimal online algorithm in this probabilistic model and analyze its expected cost and its expected savings, i.e., the cost that it saves in comparison to the cost that would arise without having a buffer. In particular, we compare the savings of the optimal online algorithm with the savings of the optimal offline algorithm in a probabilistic competitive analysis and obtain tight bounds (up to constant factors) on the ratio between the expected savings of these two algorithms. © Springer-Verlag 2009.




Englert, M., Vöcking, B., & Winkler, M. (2009). Stochastic Algorithms: Foundations and Applications. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 5792(May), 179–190. Retrieved from

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free