The Mitochondrial Network of Human Neutrophils: Role in Chemotaxis, Phagocytosis, Respiratory Burst Activation, and Commitment to Apoptosis

  • Fossati G
  • Moulding D
  • Spiller D
  • et al.
297Citations
Citations of this article
217Readers
Mendeley users who have this article in their library.

Abstract

It is commonly assumed that human neutrophils possess few, if any, functional mitochondria and that they do not depend on these organelles for cell function. We have used the fluorescent mitochondrial indicators, JC-1, MitoTracker Red, and dihydrorhodamine 123 to show that live neutrophils possess a complex mitochondrial network that extends through the cytoplasm. The membrane potential of these mitochondria was rapidly (within 2 min) disrupted by the addition of FCCP (IC50 = 20 nM), but not by the Fo-ATPase inhibitor, oligomycin (at up to 7 μg/ml). However, inhibition of mitochondrial function with both agents resulted in cell shape changes. Neither activation of the respiratory burst nor phagocytosis of either latex particles or serum-opsonized Staphylococcus aureus was affected by the addition of FCCP or oligomycin. However, FCCP inhibited chemotaxis at concentrations that paralleled disruption of mitochondrial membrane potential. Furthermore, prolonged (2-h) incubation with oligomycin resulted in an impaired ability to activate a respiratory burst and also inhibited chemotaxis. These observations indicate that intact mitochondrial function is required to sustain some neutrophil functions, but not for the rapid initiation of the respiratory burst or phagocytosis. Loss of mitochondrial membrane potential was a very early marker for commitment of neutrophils into apoptosis and preceded the appearance of phosphatidylserine on the cell surface. However, inhibition of mitochondrial function did not accelerate the rate of neutrophil apoptosis. These data shed important insights into the hitherto unrecognized importance of mitochondria in the function of neutrophils during infection and inflammation.

Cite

CITATION STYLE

APA

Fossati, G., Moulding, D. A., Spiller, D. G., Moots, R. J., White, M. R. H., & Edwards, S. W. (2003). The Mitochondrial Network of Human Neutrophils: Role in Chemotaxis, Phagocytosis, Respiratory Burst Activation, and Commitment to Apoptosis. The Journal of Immunology, 170(4), 1964–1972. https://doi.org/10.4049/jimmunol.170.4.1964

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free