Altered IL-4 mRNA Stability Correlates with Th1 and Th2 Bias and Susceptibility to Hypersensitivity Pneumonitis in Two Inbred Strains of Mice

  • Butler N
  • Monick M
  • Yarovinsky T
  • et al.
56Citations
Citations of this article
23Readers
Mendeley users who have this article in their library.

Abstract

Previously, we have shown in a model of hypersensitivity pneumonitis that Th1-biased C57BL/6 mice are susceptible and Th2-biased DBA/2 mice are resistant to disease. We also showed that this was explained in part by differential regulation of IL-12 by IL-4. For these reasons, we postulated that C57BL/6 and DBA/2 mice differentially express IL-4. In this study, we show that C57BL/6 immune cells express Th2 but not Th1 cytokines at lower levels than DBA/2 cells. We also found that C57BL/6 splenocytes exhibit decreased mRNA stability of Th2 cytokines, relative to DBA/2 splenocytes. Stability of IL-2 and IFN-γ were similar in the two strains of mice. Differences in Th2 cytokine mRNA stability between C57BL/6 and DBA/2 cells were not due to sequence polymorphism at specific regions of the IL-4/IL-13 locus. Furthermore, expression of Th1- and Th2-specific transcription factors T-bet and GATA-3, as well as the nuclear factor of activated T cells transcription factor, NFATc, was not significantly different between the two mice. Our data suggest that decreased mRNA stability of Th2 cytokines in C57BL/6 splenocytes may underlie the differential susceptibility to hypersensitivity pneumonitis between C57BL/6 and DBA/2 mice. Moreover, our results indicate that regulation of mRNA stability may serve as an important mechanism underlying Th1/Th2 immune polarization.

Cite

CITATION STYLE

APA

Butler, N. S., Monick, M. M., Yarovinsky, T. O., Powers, L. S., & Hunninghake, G. W. (2002). Altered IL-4 mRNA Stability Correlates with Th1 and Th2 Bias and Susceptibility to Hypersensitivity Pneumonitis in Two Inbred Strains of Mice. The Journal of Immunology, 169(7), 3700–3709. https://doi.org/10.4049/jimmunol.169.7.3700

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free