Efficient indexing of regional maximum activations of convolutions using full-text search engines

4Citations
Citations of this article
10Readers
Mendeley users who have this article in their library.
Get full text

Abstract

In this paper, we adapt a surrogate text representation technique to develop efficient instance-level image retrieval using Regional Maximum Activations of Convolutions (R-MAC). R-MAC features have recently showed outstanding performance in visual instance retrieval. However, contrary to the activations of hidden layers adopting ReLU (Rectified Linear Unit), these features are dense. This constitutes an obstacle to the direct use of inverted indexes, which rely on sparsity of data. We propose the use of deep permutations, a recent approach for efficient evaluation of permutations, to generate surrogate text representation of R-MAC features, enabling indexing of visual features as text into a standard search-engine. The experiments, conducted on Lucene, show the effectiveness and efficiency of the proposed approach.

Cite

CITATION STYLE

APA

Amato, G., Carrara, F., Falchi, F., & Gennaro, C. (2017). Efficient indexing of regional maximum activations of convolutions using full-text search engines. In ICMR 2017 - Proceedings of the 2017 ACM International Conference on Multimedia Retrieval (pp. 420–423). Association for Computing Machinery, Inc. https://doi.org/10.1145/3078971.3079035

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free