Recently, the coordination of EVs' charging and renewable energy has become a hot research all around the globe. Considering the requirements of EV owner and the influence of the PV output fluctuation on the power grid, a three-objective optimization model was established by controlling the EVs charging power during charging process. By integrating the meshing method into differential evolution cellular (DECell) genetic algorithm, an improved differential evolution cellular (IDECell) genetic algorithm was presented to solve the multiobjective optimization model. Compared to the NSGA-II and DECell, the IDECell algorithm showed better performance in the convergence and uniform distribution. Furthermore, the IDECell algorithm was applied to obtain the Pareto front of nondominated solutions. Followed by the normalized sorting of the nondominated solutions, the optimal solution was chosen to arrive at the optimized coordinated control strategy of PV generation and EVs charging. Compared to typical charging pattern, the optimized charging pattern could reduce the fluctuations of PV generation output power, satisfy the demand of EVs charging quantity, and save the total charging cost.
CITATION STYLE
Zhao, G., Huang, X., & Qiang, H. (2015). Coordinated Control of PV Generation and EVs Charging Based on Improved DECell Algorithm. International Journal of Photoenergy, 2015. https://doi.org/10.1155/2015/497697
Mendeley helps you to discover research relevant for your work.