Melatonin Improves Drought Resistance in Maize Seedlings by Enhancing the Antioxidant System and Regulating Abscisic Acid Metabolism to Maintain Stomatal Opening Under PEG-Induced Drought

59Citations
Citations of this article
57Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Maize (Zea mays L.) is highly sensitive to drought stress, resulting in large losses in yield; therefore, strategies aimed at enhancing drought tolerance are essential. Melatonin improves stress tolerance in plants; however, its mechanism in maize seedlings under drought stress remains unknown. Therefore, we investigated the effects of foliar-sprayed melatonin (100 umol L−1) on the antioxidant system, photosynthetic gas exchange parameters, stomatal behavior, endogenous melatonin and abscisic acid (ABA)-related gene expression in maize seedling leaves under 20% polyethylene glycol (PEG)-induced drought stress. PEG treatment resulted in oxidative stress and stomatal closure, resulting in chlorophyll degradation and inhibition of photosynthesis; thereby, reducing seedling biomass. Melatonin pretreatment significantly improved the relative water content, photosynthetic gas exchange parameters and stomatal behavior; thereby, maintaining chlorophyll contents and photosynthesis. Melatonin also stimulated the antioxidant system, enhancing the clearance of reactive-oxygen species, preventing severe damage under PEG-induced drought. Pre-treatment also increased endogenous melatonin and inhibited up-regulation of NCED1, an ABA synthesis-related gene, as well as selectively up-regulating ABA catabolic genes ABA8ox1 and ABA8ox3, reducing ABA accumulation and inducing stomatal reopening. Overall, these findings suggest that melatonin pre-treatment alleviated the inhibitory effects of drought stress on photosynthesis, enhancing tolerance in maize seedlings.

Cite

CITATION STYLE

APA

Li, Z., Su, X., Chen, Y., Fan, X., He, L., Guo, J., … Yang, Q. (2021). Melatonin Improves Drought Resistance in Maize Seedlings by Enhancing the Antioxidant System and Regulating Abscisic Acid Metabolism to Maintain Stomatal Opening Under PEG-Induced Drought. Journal of Plant Biology, 64(4), 299–312. https://doi.org/10.1007/s12374-021-09297-3

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free