Predicting prognosis and clinical features of the tumor microenvironment based on ferroptosis score in patients with breast cancer

8Citations
Citations of this article
14Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Ferroptosis genes have recently been reported to be involved in regulating the development of cancer, but their potential role in breast cancer (BRCA) is not fully understood. The purpose of this study is to systematically study the mechanism of ferroptosis in BRCA and its relationship with this cancer’s prognosis, cell infiltration, gene mutation, and other clinical features. In this study, The Cancer Genome Atlas breast cancer (TCGA-BRCA) database (UCSC Xena) was used to mine the ferroptosis genes related to BRCA patients, and the genes with prognostic value were screened by Cox regression analysis, which were then used to construct a prognostic model for scoring prognostic molecular risk. The relationships between ferroptosis score and prognosis, molecular typing, and clinical characteristics of BRCA were also analyzed. A total of 176 ferroptosis genes related to BRCA were retrieved from the database, 22 of which were found to be significantly related to BRCA prognosis after screening by single-factor Cox regression analysis (p < 0.01). Unsupervised clustering of samples was performed using factoextra, and two subgroups (ferroptosis cluster A and ferroptosis cluster B) with significant differences in prognosis were identified. Subsequently, single-factor Cox regression analysis and random forest dimensionality reduction were used to screen characteristic genes to construct a ferroptosis score model, which included a high ferroptosis score group and a low ferroptosis score group. The results showed that there were significant differences in ferroptosis scores between the ferroptosis cluster A and B groups. The prognosis of patients with low ferroptosis scores was poor, and the overall survival (OS) rate of patients with high ferroptosis scores was significantly higher, indicating that the prognosis of the sample can be well characterized based on calculated ferroptosis scores. Ferroptosis scores differed significantly according to patient age, TP53 and PIK3CA gene mutations, different PAM50 molecular types, and clinical stages. Ferroptosis activation plays a non-negligible role in tumor occurrence and development. Evaluating the ferroptosis score within BRCA will help advance our understanding of the infiltrating properties of cells in the tumor microenvironment and may guide more effective immunotherapy strategies.

Cite

CITATION STYLE

APA

Yin, L., & Tang, Y. (2022). Predicting prognosis and clinical features of the tumor microenvironment based on ferroptosis score in patients with breast cancer. Scientific Reports, 12(1). https://doi.org/10.1038/s41598-022-14964-7

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free