In this study, we have investigated how the function of native and recombinant nicotinic acetylcholine receptors (nAChRs) is modulated by the monoterpenoid alcohol from peppermint (-) menthol. In trigeminal neurons (TG), we found that nicotine (75 μM)-activated whole-cell currents through nAChRs were reversibly reduced by menthol in a concentration-dependent manner with an IC. 50 of 111 μM. To analyze the mechanism underlying menthol's action in more detail, we used single channel and whole-cell recordings from recombinant human α4β2 nAChR expressed in HEK tsA201 cells. Here, we found a shortening of channel open time and a prolongation of channel closed time, and an increase in single channel amplitude leading in summary to a reduction in single channel current. Furthermore, menthol did not affect nicotine's EC. 50 value for currents through recombinant human α4β2 nAChRs but caused a significant reduction in nicotine's efficacy. Taken together, these findings indicate that menthol is a negative allosteric modulator of nAChRs. © The Author 2012. Published by Oxford University Press. All rights reserved.
CITATION STYLE
Hans, M., Wilhelm, M., & Swandulla, D. (2012). Menthol suppresses nicotinic acetylcholine receptor functioning in sensory neurons via allosteric modulation. Chemical Senses, 37(5), 463–469. https://doi.org/10.1093/chemse/bjr128
Mendeley helps you to discover research relevant for your work.