MicroRNA-208 modulates BMP-2-stimulated mouse preosteoblast differentiation by directly targeting V-ets erythroblastosis virus E26 oncogene homolog 1

61Citations
Citations of this article
44Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

MicroRNAs (miRs) represent a class of endogenous ∼18-25 nucleotide RNAs that regulate gene expression through translational repression by binding to a target mRNA. These miRs regulate several biological functions, such as cell growth, cell differentiation, carcinogenesis, and so on. In a previous report, we have indicated that miR-141 and -200a act as preosteoblast differentiation modulators. In the present study, using microRNA array and in silico analyses, we found that miR-208 is closely involved in preosteoblast differentiation by partially regulating the expression of Ets1 (V-ets erythroblastosis virus E26 oncogene homolog 1), which transactivates osteopontin, runt-related transcription factor 2, parathyroid hormone-related protein, and type I procollagen. Furthermore, the enforced expression of mature miR-208 in murine preosteoblast in MC3T3-E1 cells or primary osteoblast cells remarkably attenuated BMP-2-induced preosteoblast differentiation. In addition, we determined that Ets1 is a target gene of miR-208 by using a sensor luciferase reporter assay. Taken together, these results suggest that the down-regulation of miR-208 in BMP-2-stimulated osteoblast differentiation is an important part of the regulatory machinery involved in early osteogenesis. © 2010 by The American Society for Biochemistry and Molecular Biology, Inc.

Cite

CITATION STYLE

APA

Itoh, T., Takeda, S., & Akao, Y. (2010). MicroRNA-208 modulates BMP-2-stimulated mouse preosteoblast differentiation by directly targeting V-ets erythroblastosis virus E26 oncogene homolog 1. Journal of Biological Chemistry, 285(36), 27745–27752. https://doi.org/10.1074/jbc.M110.105080

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free