Antenatal dietary education and supplementation to increase energy and protein intake

201Citations
Citations of this article
716Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Background: Gestational weight gain is positively associated with fetal growth, and observational studies of food supplementation in pregnancy have reported increases in gestational weight gain and fetal growth. Objectives: To assess the effects of education during pregnancy to increase energy and protein intake, or of actual energy and protein supplementation, on energy and protein intake, and the effect on maternal and infant health outcomes. Search methods: We searched the Cochrane Pregnancy and Childbirth Group's Trials Register (31 January 2015), reference lists of retrieved studies and contacted researchers in the field. Selection criteria: Randomised controlled trials of dietary education to increase energy and protein intake, or of actual energy and protein supplementation, during pregnancy. Data collection and analysis: Two review authors independently assessed trials for inclusion and assessed risk of bias. Two review authors independently extracted data and checked for accuracy. Extracted data were supplemented by additional information from the trialists we contacted. Main results: We examined 149 reports corresponding to 65 trials. Of these trials, 17 were included, 46 were excluded, and two are ongoing. Overall, 17 trials involving 9030 women were included. For this update, we assessed methodological quality of the included trials using the standard Cochrane criteria (risk of bias) and the GRADE approach. The overall risk of bias was unclear. Nutritional education (five trials, 1090 women) Women given nutritional education had a lower relative risk of having a preterm birth (two trials, 449 women) (risk ratio (RR) 0.46, 95% CI 0.21 to 0.98, low-quality evidence), and low birthweight (one trial, 300 women) (RR 0.04, 95% CI 0.01 to 0.14). Head circumference at birth was increased in one trial (389 women) (mean difference (MD) 0.99 cm, 95% CI 0.43 to 1.55), while birthweight was significantly increased among undernourished women in two trials (320 women) (MD 489.76 g, 95% CI 427.93 to 551.59, low-quality evidence), but did not significantly increase for adequately nourished women (MD 15.00, 95% CI -76.30 to 106.30, one trial, 406 women). Protein intake increased significantly (three trials, 632 women) (protein intake: MD +6.99 g/day, 95% CI 3.02 to 10.97). No significant differences were observed on any other outcomes such as neonatal death (RR 1.28, 95% CI 0.35 to 4.72, one trial, 448 women, low-quality evidence), stillbirth (RR 0.37, 95% CI 0.07 to 1.90, one trial, 431 women, low-quality evidence), small-for-gestational age (RR 0.97, 95% CI 0.45 to 2.11, one trial, 404 women, low-quality evidence) and total gestational weight gain (MD -0.41, 95% CI -4.41 to 3.59, two trials, 233 women). There were no data on perinatal death. Balanced energy and protein supplementation (12 trials, 6705 women) Risk of stillbirth was significantly reduced for women given balanced energy and protein supplementation (RR 0.60, 95% CI 0.39 to 0.94, five trials, 3408 women, moderate-quality evidence), and the mean birthweight was significantly increased (random-effects MD +40.96 g, 95% CI 4.66 to 77.26, Tau2 = 1744, I2 = 44%, 11 trials, 5385 women, moderate-quality evidence). There was also a significant reduction in the risk of small-for-gestational age (RR 0.79, 95% CI 0.69 to 0.90, I2 = 16%, seven trials, 4408 women, moderate-quality evidence). No significant effect was detected for preterm birth (RR 0.96, 95% CI 0.80 to 1.16, five trials, 3384 women, moderate-quality evidence) or neonatal death (RR 0.68, 95% CI 0.43 to 1.07, five trials, 3381 women, low-quality evidence). Weekly gestational weight gain was not significantly increased (MD 18.63, 95% CI -1.81 to 39.07, nine trials, 2391 women, very low quality evidence). There were no data reported on perinatal death and low birthweight. High-protein supplementation (one trial, 1051 women) High-protein supplementation (one trial, 505 women), was associated with a significantly increased risk of small-for-gestational age babies (RR 1.58, 95% CI 1.03 to 2.41, moderate-quality evidence). There was no significant effect for stillbirth (RR 0.81, 95% CI 0.31 to 2.15, one trial, 529 women), neonatal death (RR 2.78, 95% CI 0.75 to 10.36, one trial, 529 women), preterm birth (RR 1.14, 95% CI 0.83 to 1.56, one trial, 505 women), birthweight (MD -73.00, 95% CI -171.26 to 25.26, one trial, 504 women) and weekly gestational weight gain (MD 4.50, 95% CI -33.55 to 42.55, one trial, 486 women, low-quality evidence). No data were reported on perinatal death. Isocaloric protein supplementation (two trials, 184 women) Isocaloric protein supplementation (two trials, 184 women) had no significant effect on birthweight (MD 108.25, 95% CI -220.89 to 437.40) and weekly gestational weight gain (MD 110.45, 95% CI -82.87 to 303.76, very low-quality evidence). No data reported on perinatal mortality, stillbirth, neonatal death, small-for-gestational age, and preterm birth. Authors' conclusions: This review provides encouraging evidence that antenatal nutritional education with the aim of increasing energy and protein intake in the general obstetric population appears to be effective in reducing the risk of preterm birth, low birthweight, increasing head circumference at birth, increasing birthweight among undernourished women, and increasing protein intake. There was no evidence of benefit or adverse effect for any other outcome reported. Balanced energy and protein supplementation seems to improve fetal growth, and may reduce the risk of stillbirth and infants born small-for-gestational age. High-protein supplementation does not seem to be beneficial and may be harmful to the fetus. Balanced-protein supplementation alone had no significant effects on perinatal outcomes. The results of this review should be interpreted with caution. The risk of bias was either unclear or high for at least one category examined in several of the included trials, and the quality of the evidence was low for several important outcomes. Also, as the anthropometric characteristics of the general obstetric population is changing, those developing interventions aimed at altering energy and protein intake should ensure that only those women likely to benefit are included. Large, well-designed randomised trials are needed to assess the effects of increasing energy and protein intake during pregnancy in women whose intake is below recommended levels.

Cite

CITATION STYLE

APA

Ota, E., Hori, H., Mori, R., Tobe-Gai, R., & Farrar, D. (2015, June 2). Antenatal dietary education and supplementation to increase energy and protein intake. Cochrane Database of Systematic Reviews. John Wiley and Sons Ltd. https://doi.org/10.1002/14651858.CD000032.pub3

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free