Functional assembly of minicellulosomes on the Saccharomyces cerevisiae cell surface for cellulose hydrolysis and ethanol production

188Citations
Citations of this article
203Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

We demonstrated the functional display of a miniscaffoldin on the Saccharomyces cerevisiae cell surface consisting of three divergent cohesin domains from Clostridium thermocellum (t), Clostridium cellulolyticum (c), and Ruminococcus flavefaciens (f). Incubation with Escherichia coli lysates containing an endoglucanase (CelA) fused with a dockerin domain from C. thermocellum (At), an exoglucanase (CelE) from C. cellulolyticum fused with a dockerin domain from the same species (Ec), and an endoglucanase (CelG) from C. cellulolyticum fused with a dockerin domain from R. flavefaciens (Gf) resulted in the assembly of a functional minicellulosome on the yeast cell surface. The displayed minicellulosome retained the synergistic effect for cellulose hydrolysis. When a β-glucosidase (BglA) from C. thermocellum tagged with the dockerin from R. flavefaciens was used in place of Gf, cells displaying the new minicellulosome exhibited significantly enhanced glucose liberation and produced ethanol directly from phosphoric acid-swollen cellulose. The final ethanol concentration of 3.5 g/liter was 2.6-fold higher than that obtained by using the same amounts of added purified cellulases. The overall yield was 0.49 g of ethanol produced per g of carbohydrate consumed, which corresponds to 95% of the theoretical value. This result confirms that simultaneous and synergistic saccharification and fermentation of cellulose to ethanol can be efficiently accomplished with a yeast strain displaying a functional minicellulosome containing all three required cellulolytic enzymes. Copyright © 2009, American Society for Microbiology. All Rights Reserved.

Cite

CITATION STYLE

APA

Tsai, S. L., Oh, J., Singh, S., Chen, R., & Chen, W. (2009). Functional assembly of minicellulosomes on the Saccharomyces cerevisiae cell surface for cellulose hydrolysis and ethanol production. Applied and Environmental Microbiology, 75(19), 6087–6093. https://doi.org/10.1128/AEM.01538-09

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free