Indole-thiazolidinone conjugate inhibits nasopharyngeal carcinoma cell migration and invasion by targeting nf κb pathway

0Citations
Citations of this article
5Readers
Mendeley users who have this article in their library.

Abstract

Purpose: To investigate the effect of indole-thiazolidinone on metastasis in HK1 nasopharyngeal carcinoma cells. Methods: HK1 cell proliferation was determined colorimetrically using 3-(4,5-dimethylthiazol-2-yl)-2,5- diphenyltetrazolium bromide (MTT) assay. Invasion and migration of HK1 cells were assessed using Matrigel™ chamber coated invasion and wound healing assays, respectively. Results: Indole-thiazolidinone suppressed proliferation of HK1 and NPC 039 NPC cell lines at 72 h. The degree of proliferation of HK1 cells on treatment with 0.25, 0.5, 1.0, 1.5, 2.0, 2.5 and 3.0 μM indolethiazolidinone was 99, 87, 71, 64, 49, 38 and 31 %, respectively. In HK1 cell cultures, migration potential was reduced to 58.32, 47.54, 28.91 and 17.65 %, on exposure to 1.5, 2.0, 2.5 and 3.0 μM indole-thiazolidinone, respectively. Incubation with 1.5, 2.0, 2.5 and 3.0 μM indole-thiazolidinone resulted in cell invasion values of 63.41, 49.37, 35.12 and 19.67 %, respectively. There was a marked decrease in the expressions of matrix metalloproteinase 2 and matrix metalloproteinase 9 in HK1 cells on treatment with indole-thiazolidinone (p < 0.05). In addition, indole-thiazolidinone treatment resulted in decrease in p65 and p50 in nuclear fraction. Treatment of HK1 and NPC 039 cells with indolethiazolidinone and henenalin synergistically decreased cell proliferation. Indole-thiazolidinone treatment caused significant decrease in tumor growth in mice (p < 0.05). Conclusion: Indole-thiazolidinone inhibits proliferation and metastasis in nasopharyngeal carcinoma cells. Therefore, it has potential for development as a therapeutic management of nasopharyngeal carcinoma in humans.

Cite

CITATION STYLE

APA

Zhang, G., & Zhang, S. (2019). Indole-thiazolidinone conjugate inhibits nasopharyngeal carcinoma cell migration and invasion by targeting nf κb pathway. Tropical Journal of Pharmaceutical Research, 18(3), 519–525. https://doi.org/10.4314/tjpr.v18i3.11

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free