Modeling Rocket Flight in the Low-Friction Approximation

  • White L
N/ACitations
Citations of this article
9Readers
Mendeley users who have this article in their library.

Abstract

In a realistic model for rocket dynamics, in the presence of atmospheric drag and altitude-dependent gravity, the exact kinematic equation cannot be integrated in closed form; even when neglecting friction, the exact solution is a combination of elliptic functions of Jacobi type, which are not easy to use in a computational sense. This project provides a precise analysis of the various terms in the full equation (such as gravity, drag, and exhaust momentum), and the numerical ranges for which various approximations are accurate to within 1%. The analysis leads to optimal approximations expressed through elementary functions, which can be implemented for efficient flight prediction on simple computational devices, such as smartphone applications.

Cite

CITATION STYLE

APA

White, L. (2014). Modeling Rocket Flight in the Low-Friction Approximation. Undergraduate Journal of Mathematical Modeling: One + Two, 6(1). https://doi.org/10.5038/2326-3652.6.1.4861

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free