The transferrin receptor (TfR) is a transmembrane protein that mediates cellular uptake of iron. Although the serum concentration of the soluble TfR (sTfR) is altered in several diseases and used for diagnostic purposes, the identity and regulation of the shedding protease is unknown. In this study we quantified sTfR release from microsomal membranes and leukocytic cell lines in the presence of numerous protease inhibitors and cell activating compounds. We show that sTfR release is mediated by an integral membrane metalloprotease and can be inhibited by matrix metalloproteinase inhibitor 2 and tumor necrosis factor α protease inhibitor-2 (TAPI-2). Cleavage is also inhibited by a specific furin inhibitor, indicating that the protease is activated by a furin-like proprotein convertase. Whereas stimulation of the cells by the ectodomain shedding activator phorbol 12-N-myristate 13-acetate did not alter sTfR release significantly, the phosphatase inhibitor pervanadate led to an increase of TfR shedding in several leukocytic cell lines. Our results suggest that TfR shedding is constitutively mediated by a member of the metalloprotease family known as ADAM (for a disintegrin and metalloprotease).
CITATION STYLE
Kaup, M., Dassler, K., Weise, C., & Fuchs, H. (2002). Shedding of the transferrin receptor is mediated constitutively by an integral membrane metalloprotease sensitive to tumor necrosis factor α protease inhibitor-2. Journal of Biological Chemistry, 277(41), 38494–38502. https://doi.org/10.1074/jbc.M203461200
Mendeley helps you to discover research relevant for your work.