In reality, many cryptographic analysis techniques are based on a specific cryptographic system or a large number of encrypted ciphertext. The identification and detection of cryptographic system is of great significance for evaluating the security of the algorithm and guiding the design and improvement of the algorithm. In this paper, we transcode each character in ciphertext into a decimal number, construct these numbers into one-dimensional arrays, and obtain the Euclidean distance between these one-dimensional arrays. Then we use these distances as features and input them into three machine learning classifiers: random forest, logistic regression and support vector machine to recognize cryptosystem and compare their recognition accuracy. The subjects include 8 common block ciphers (DES, 3DES, AES-128, AES-256, IDEA, SMS4, Blowfish, Camellia-128). The experimental results show that using the feature extraction scheme not only shortens the experimental time, reduces the computational cost, but also improves the recognition accuracy of eight typical block cipher algorithms. The classification accuracy of the ECB mode in the random forest classifier is 75%, which is higher than the existing published literature experimental results. The classification accuracy rate of CBC mode is higher than 13.5%, which is higher than the accuracy of random classification.
CITATION STYLE
Zhao, Y., & Fan, S. (2019). Analysis of cryptosystem recognition scheme based on Euclidean distance feature extraction in three machine learning classifiers. In Journal of Physics: Conference Series (Vol. 1314). Institute of Physics Publishing. https://doi.org/10.1088/1742-6596/1314/1/012184
Mendeley helps you to discover research relevant for your work.